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Solitons on a zigzag-runged ladder lattice
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The nonlinear dynamical model on a two-leg ladder lattice with the rungs arranged into a zigzag chain is
proposed. The lattice contains two structure elements~molecules! in the unit cell. As a result, the system
exhibits the two-branch spectrum in its low-amplitude limit. The similar two branches are shown to be
observed in high-amplitude soliton solutions too. The integrability of the model is proved and the one-soliton
solutions are explicitly presented and analyzed. The model Hamiltonian, as well as the basic conserved
quantities are found.
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The integrable one-component@1# and multicomponent
@2,3# nonlinear Schro¨dinger systems on one-dimensional la
tices arise as appropriate discretizations of their respec
continuous counterparts, namely the Zakharov-Shabat@4#
and Manakov@5# ones. However, the power of any di
cretized model appears to be more pronounced as comp
with its continuous ancestor. Thus, using the integra
Ablowitz-Ladik model @1# we have managed to reveal th
localized solitonic modes in discrete Davydov-Kysluk
nonlinear system@6,7# as well as in a standard discrete no
linear Schro¨dinger one@7#. The physical origin of these os
cillations turns out to be the same as that of intrinsic loc
ized modes observable in a pure unharmonic lattice@8,9# in
view of the close relationship between the nonlinear Sch¨-
dinger and the nonlinear mechanical lattice systems
rotating-wave approximation@10,11#. The multicomponent
integrable nonlinear models@2,3# may in principle be applied
to the investigation of even more sophisticated dynam
systems.

Recently, we have developed the multicomponent in
grable nonlinear model on a multileg ladder lattice@12,13#. It
has permitted us to describe the slalom soliton dynamics
a ladder lattice with zigzag distributed on-site impuriti
@14,15# and has furnished insights into the nature of
attractive-repulsive alternative in an effective soliton inter
tion with the modified transverse bond@14#.

Another approach dealing mainly with the soliton loca
ization on a double-chain~ladder! lattice has been demon
strated within the framework of two coupled on
dimensional Ablowitz-Ladik equations@16#. The similar idea
to couple two known integrable discrete nonlinear syste
namely Ablowitz-Ladik@1# and Toda@17# systems, has actu
ally been explored to investigate the solitonic energy tran
in a coupled exciton-vibron system@18#.

It is interesting to note that ladder lattice structures
now very popular objects also for the experimental detec
@19,20# and theoretical description@20# of spatially localized
excitations~breathers! in Josephson-junction arrays.

Finally, the nonlinear mechanical model of the Ferm
Pasta-Ulam-type has recently been invoked for the exp
mental and theoretical investigation of pulselike deform
tions propagating through the discrete geophysical med
with the Hertz contact interaction between the structure
ments@21#.
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Thus, we clearly see that the discrete nonlinear mod
play a fundamental role in a variety of physical problem
The integrable models on ladder lattices among them ap
to be the most perspective ones due in part to their inte
bility and realistic quasi-one-dimensional character of
primary lattice structure.

In the present report we study the integrable nonlin
model on a two-leg ladder lattice with the rungs arrang
into a zigzaglike chain. Here, we would like to stress th
such a lattice has nothing to do with those considered in
previous publications@12–15#. Consequently, the model o
interest is suggested to be another one.

We start with the explicit presentation of our model

1 i q̇2~n!12v0q2~n!

11q2~n!r 2~n!
1v t

2q1~n!1v t
1q1~n21!

1v l
1q2~n21!@11q1~n21!r 1~n21!#

1v l
2q2~n11!@11q1~n!r 1~n!#1v l

1q1~n21!

3@q1~n21!r 2~n!1q2~n!r 1~n!#1v l
2q1~n!

3@q1~n!r 2~n!1q2~n!r 1~n21!#50 ~1!

2 i ṙ 2~n!12v0r 2~n!

11r 2~n!q2~n!
1v t

1r 1~n!1v t
2r 1~n21!

1v l
2r 2~n21!@11r 1~n21!q1~n21!#

1v l
1r 2~n11!@11r 1~n!q1~n!#1v l

2r 1~n21!

3@r 1~n21!q2~n!1r 2~n!q1~n!#1v l
1r 1~n!

3@r 1~n!q2~n!1r 2~n!q1~n21!#50 ~2!

1 i q̇1~n!12v0q1~n!

11q1~n!r 1~n!
1v t

1q2~n!1v t
2q2~n11!

1v l
2q1~n11!@11q2~n11!r 2~n11!#

1v l
1q1~n21!@11q2~n!r 2~n!#1v l

2q2~n11!

3@q2~n11!r 1~n!1q1~n!r 2~n!#1v l
1q2~n!

3@q2~n!r 1~n!1q1~n!r 2~n11!#50 ~3!
©2001 The American Physical Society01-1
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2 i ṙ 1~n!12v0r 1~n!

11r 1~n!q1~n!
1v t

2r 2~n!1v t
1r 2~n11!

1v l
1r 1~n11!@11r 2~n11!q2~n11!#

1v l
2r 1~n21!@11r 2~n!q2~n!#1v l

1r 2~n11!

3@r 2~n11!q1~n!1r 1~n!q2~n!#1v l
2r 2~n!

3@r 2~n!q1~n!1r 1~n!q2~n11!#50, ~4!

as a sufficient object to give some basic definitions and a
most natural tool to trace the structure of intersite linear c
plings ~bonds!, and hence, to imagine more clearly the p
mary structure of the whole lattice. Namely, we can saf
prescribe the dynamical variablesq2(n),r 2(n) andq1(n),
r 1(n) to be the field amplitudes~or amplitudes of intramo-
lecular excitations! associated with the lattice sites, respe
tively, on left (2) and right (1) straight chains~legs! of the
lattice within nth unit cell. Then the quantitiesv l

2 ,v l
1 and

v t
2 ,v t

1 are seen to characterize the strength of longitud
~l! and transverse~t! intersite linear couplings, respectivel
regardless of their possible time dependences. The overd
Eqs.~1!–~4! stands for the derivative with respect to dime
sionless timet, whereas the longitudinal numerical coord
naten is assumed to run from minus to plus infinity. Finall
the terms proportional tov0 describe the regular energy sh
and could be easily eliminated by the standard gauge tr
formation of field amplitudes.

It is easy to conclude that every site of adopted two-
ladder lattice is linearly coupled to four of its neighbors~to
two on the same leg of the ladder and to two on the oppo
leg! in contrast to the two-leg version of the already know
integrable model@12–14#, where only three neighbors in lin
ear couplings are involved.

In general, the coupling parametersv l
2 ,v l

1 andv t
2 ,v t

1

are proved to be arbitrary functions of time. The freedom
choosing their particular time modulations appears to p
vide a practically inexhaustible source of parametrica
driven physical systems integrable by the inverse scatte
transform.

It is worthwhile to stress that the nonlinear model of i
terest may be readily written in rather compact Hamilton
form

1 i q̇7~n!5@11q7~n!r 7~n!#]H/]r 7~n!, ~5!

2 i ṙ 7~n!5@11q7~n!r 7~n!#]H/]q7~n!. ~6!

Here, the model Hamiltonian

H52v l
2I l

22v t
2I t

222v0I 02v t
1I t

12v l
1I l

1 , ~7!

is totally determined by the conserved quantities
06760
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I l
25 (

m52`

`

q1~m!r 1~m21!@11q2~m!r 2~m!#

1 (
m52`

`

q2~m11!r 2~m!@11q1~m!r 1~m!#

1 (
m52`

`
1

2
@q1

2 ~m!r 2
2 ~m!1q2

2 ~m!r 1
2 ~m21!#, ~8!

I t
25 (

m52`

`

@q1~m!r 2~m!1q2~m!r 1~m21!#, ~9!

I 05 (
m52`

`

ln$@11q2~m!r 2~m!#@11q1~m!r 1~m!#%,

~10!

I t
15 (

m52`

`

@q2~m!r 1~m!1q1~m!r 2~m11!#, ~11!

I l
15 (

m52`

`

q2~m!r 2~m11!@11q1~m!r 1~m!#

1 (
m52`

`

q1~m21!r 1~m!@11q2~m!r 2~m!#

1 (
m52`

`
1

2
@q2

2 ~m!r 1
2 ~m!1q1

2 ~m!r 2
2 ~m11!#,

~12!

via an appropriate multiplication by the coupling paramete
Although the Poisson brackets related to the model~1!–

~4! are turned out to be nonstandard, they are unable to c
any discrepancy in physical applications. Indeed, introduc
the corrected amplitudes

Q7~n!5A@q7~n!/r 7~n!# ln@11q7~n!r 7~n!#, ~13!

R7~n!5A@r 7~n!/q7~n!# ln@11q7~n!r 7~n!#, ~14!

we might always convert the original model~1!–~4! into the
standard form

1 iQ̇7~n!5]H/]R7~n!, ~15!

2 iṘ7~n!5]H/]Q7~n!. ~16!

Here, of course,H must be written in terms of the amplitude
Q2(n),R2(n) andQ1(n),R1(n).

Remarkably, the corrected model~15!,~16! possesses the
same linear part as the original one~1!–~4! and hence, ex-
hibits the same low-amplitude spectrum.

The model~1!–~4! is integrable by the method of invers
scattering transform insofar as it actually has been deco
from the Lax equation

L̇~nuz!5A~n11uz!L~nuz!2L~nuz!A~nuz!, ~17!

with the following spectral operator:
1-2
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L~nuz!5S z22q1~n!r 2~n!, izq2~n!1 iz21q1~n!

izr1~n!1 iz21r 2~n!, z222r 1~n!q2~n!
D .

~18!

The corresponding evolution operatorA(nuz) is determined
from the Lax equation~17! under the assumption that it mu
be expanded in the same powers of spectral parameterz as
L2(nuz), i.e., its matrix elementsAjk(nuz) must be sought in
the form

A11~nuz!5a11~n!z41b11~n!z21c11~n!1d11~n!z22, ~19!

A12~nuz!5a12~n!z31b12~n!z1c12~n!z211d12~n!z23,
~20!

A21~nuz!5a21~n!z31b21~n!z1c21~n!z211d21~n!z23,
~21!

A22~nuz!5a22~n!z21b22~n!1c22~n!z221d22~n!z24. ~22!

Specifically, for the functionsajk(n), bjk(n), cjk(n), and
djk(n), we have

a11~n!51 iv l
2 , ~23!

b11~n!51 iv t
21 iv l

2q2~n!r 1~n21!, ~24!

c11~n!51 iv01 iv t
2q2~n!r 1~n21!1 iv l

2q1~n!r 1~n21!

3@11q2~n!r 2~n!#1 iv l
2q2~n!r 2~n21!

3@11q1~n21!r 1~n21!#1 iv l
2q2

2 ~n!r 1
2 ~n21!,

~25!

d11~n!51 iv l
1q1~n21!r 2~n!, ~26!

a12~n!52v l
2q2~n!, ~27!

b12~n!52v t
2q2~n!2v l

2q1~n!@11q2~n!r 2~n!#

2v l
2q2

2 ~n!r 1~n21!, ~28!

c12~n!51v t
1q1~n21!1v l

1q2~n21!

3@11q1~n21!r 1~n21!#1v l
1q1

2 ~n21!r 2~n!,

~29!

d12~n!51v l
1q1~n21!, ~30!

a21~n!52v l
2r 1~n21!, ~31!

b21~n!52v t
2r 1~n21!2v l

2r 2~n21!

3@11r 1~n21!q1~n21!#

2v l
2r 1

2 ~n21!q2~n!, ~32!

c21~n!51v t
1r 2~n!1v l

1r 1~n!@11r 2~n!q2~n!#

1v l
1r 2

2 ~n!q1~n21!, ~33!

d21~n!51v l
1r 2~n!, ~34!

a22~n!52 iv l
2r 1~n21!q2~n!, ~35!
06760
b22~n!52 iv02 iv t
1r 2~n!q1~n21!2 iv l

1r 1~n!

3q1~n21!@11r 2~n!q2~n!#2v l
1r 2~n!

3q2~n21!@11r 1~n21!q1~n21!#

2v l
1r 2

2 ~n!q1
2 ~n21!, ~36!

c22~n!52 iv t
12 iv l

1r 2~n!q1~n21!, ~37!

d22~n!52 iv l
1 . ~38!

The results of the previous paragraph when combined w
the auxiliary linear problems

u~n11uz!5L~nuz!u~nuz!, ~39!

u̇~nuz!5A~nuz!u~nuz!, ~40!

~whereu(nuz) is the two-component column vector! allow
us to integrate the models of interest~1!–~4!. However, the
detailed description of the whole integration machinery go
beyond the scope of the present report. Instead, we will
cuss the simplest one-soliton solutions of the models
though being obtained within the framework of inverse sc
tering transform.

We restrict ourselves to the case of reductionr 2(n)
5q2* (n), r 1(n)5q1* (n) corresponding to the attractive typ
of nonlinearity and bright soliton solutions. Then the d
namical Eqs.~1!–~4! will be mutually consistent under con
straintH* 5H. As a consequence, the parameterv0 must be
purely real, whilev l

2 ,v l
1 , andv t

2 ,v t
1 can be parametrized

as follows

v l
65v l exp~6 ig l !, ~41!

v t
65v t exp~6 ig t!, ~42!

where the parametersv l ,g l and v t ,g t are supposed to be
the real ones. For the sake of simplicity, all of these para
eters will be taken to be time independent.

It is interesting to note that analogous to the lo
amplitude ~linear! modes, the one-soliton solutions of ou
nonlinear models~1!–~4! can be separated into two (n50
andn51) one-soliton branches

q2
(n)~n!

5

sinh~m!expF1 ikn1 i S u2
k

4
2

p

2
n D2 i tVn~kum!G

coshH 2mFn2
1

4
2x~0!2tvn~kum!G J ,

~43!

q1
(n)~n!

5

sinh~m!expF1 ikn1 i S u1
k

4
1

p

2
n D2 i tVn~kum!G

coshH 2mFn1
1

4
2x~0!2tvn~kum!G J ,

~44!
1-3
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characterized by two different (n50 andn51) cyclic fre-
quencies

Vn~kum!522v022v l cosh~2m!cos~k2g l !

2~21!n2v t cosh~m!cosS k

2
2g tD , ~45!

and by two different (n50 andn51) typical longitudinal
velocities

vn~kum!5
v l

m
sinh~2m!sin~k2g l !1~21!n

v t

m
sinh~m!

3sinS k

2
2g tD . ~46!
06760
Here, we suppose the wave numberk to be bounded to the
interval2p12g t<k<1p12g t . In the limit of extremely
long solitonsm→0, the frequenciesVn(kum) approach to
the frequencies of linear spectrumVn(ku0) (n50,1). In the
same limitm→0, the quantitiesvn(kum) acquire the mean-
ing of group velocities of respective planar waves

vn~ku0![]Vn~ku0!/]k, ~n50,1!. ~47!

The precise meaning of each velocityvn(kum) at an arbi-
trary longitudinal size of solitond;coth 2m may be under-
stood calculating the mean longitudinal coordinate of the
spective soliton wave packet on corrected@according to Eqs.
~13!,~14!# one-soliton amplitudes
xn[

(
n52`

`

@~n21/4!Q2
(n)~n!R2

(n)~n!1~n11/4!Q1
(n)~n!R1

(n)~n!#

(
n52`

`

@Q2
(n)~n!R2

(n)~n!1Q1
(n)~n!R1

(n)~n!#

. ~48!
r

mi-
the
ian
e
how
li-
ted
if-

r of
d-

ch-
We obtain

xn5x~0!1tvn~kum!. ~49!

Hence,vn(kum) is nothing but the longitudinal velocity of
the corrected one-soliton pattern belonging tonth one-
soliton branch, whilex(0) is the initial mean longitudinal
coordinate of this pattern.

The quantity, written in the denominator of definition~48!
determines the number of excitations in the one-soliton so
lution of nth branch. It owes to be time independent thanks
to the conserved quantityI 0 @see Eq.~10! taken in terms of
corrected amplitudes~13!,~14!#. The direct calculations con-
firm this statement yielding for the number of excitations the
-

same time-independent value 2m irrespective of a particula
one-solitonic branch.

Summarizing, we have developed the nonlinear dyna
cal model on a zigzag-runged ladder lattice integrable by
inverse scattering transform. We have found its Hamilton
formulation with the Hamiltonian function determined by th
superposition of basic conserved quantities and describe
to rewrite the model in terms of physically corrected amp
tudes. We have proved the model integrability and presen
its one-soliton solutions, which happen to manifest two d
ferent solitonic branches in accordance with the numbe
structural elements contained in the unit cell of primary la
der lattice.
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